Forest disturbance regimes across biomes are being altered by interactive effects of global change. Establishing baselines for assessing change requires detailed quantitative data on past disturbance events, but such data are scarce and difficult to obtain over large spatial and temporal scales. The integration of remote sensing with dense time series analysis and cloud computing platforms is enhancing the ability to monitor historical disturbances, and especially non-stand replacing events along climatic gradients.
View Article and Find Full Text PDFForest dieback processes linked to drought are expected to increase due to climate warming. Remotely sensed data offer several advantages over common field monitoring methods such as the ability to observe large areas on a systematic basis and monitoring their changes, making them increasingly used to assess changes in forest health. Here we aim to use a combined approximation of fieldwork and remote sensing to explore possible links between forest dieback and land surface phenological and trend variables derived from long Landsat time series.
View Article and Find Full Text PDF