Publications by authors named "A Verine"

Exosomes are of increasing interest as alternative mode of cell-to-cell communication. We previously reported that exosomes secreted by human SOJ-6 pancreatic tumor cells induce (glyco)protein ligand-independent cell death and inhibit Notch-1 pathway, this latter being particularly active during carcinogenesis and in cancer stem cells. Therefore, we asked whether exosomal lipids were key-elements for cell death and hypothesized that cholesterol-rich membrane microdomains were privileged sites of exosome interactions with tumor cells.

View Article and Find Full Text PDF

Aberrant glycosylation or overexpression of cell-surface glycosylated tumor-associated Ags (TAA) distinguish neoplastic from normal cells. Interactions of TAA MUC1 and HER2/neu with dendritic cells (DC) preclude efficient processing, which impairs immune responses. It is thus important to define the mechanisms of interactions between DC and glycosylated TAA and their trafficking and processing for further T cell activation.

View Article and Find Full Text PDF

Bile salt-dependent lipase was purified to homogeneity from lyophilized human milk and used to screen the influence of the acyl chain length (2-16 carbon atoms) on the kinetic constants k(cat) and K(m) of the hydrolysis of para-nitrophenyl (pnp) ester substrates in the presence or absence of sodium taurocholate (NaTC: 0.02-20 mM). The highest k(cat) value (∼3,500 s(-1)) was obtained with pnpC(8) as substrate, whereas the lowest K(m) (<10 µM) was that recorded with pnpC(10).

View Article and Find Full Text PDF

We previously reported that exosomal nanoparticles secreted by human pancreatic tumoral cell lines decrease tumoral cell proliferation through the mitochondria-dependent apoptotic pathway, because of activation of pro-apoptotic phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and of glucose synthase kinase-3beta (GSK-3beta). Interactions between exosomal nanoparticles and cells are thought to involve membrane lipid rafts. However, the underlying mechanism is unknown.

View Article and Find Full Text PDF

Aggressive melanoma cells can engage in a process termed vasculogenic mimicry (VM) that reflects the ability of tumor cells to express a multipotent, stem cell-like phenotype. Melanoma cell plasticity contributes to the lack of efficient therapeutic strategies targeting metastatic tumors. This study reveals cyclic AMP as a mediator of VM in vitro.

View Article and Find Full Text PDF