Publications by authors named "A Venault"

Article Synopsis
  • Dielectric barrier discharge (DBD) plasma treatment is an effective method for altering the surface properties of materials like porous ePTFE films, making them potentially useful for various applications.
  • The treatment enhances the surface energy and charge of the ePTFE while keeping its high porosity, enabling the incorporation of antibacterial monomers like DMAEMA and TMAEMA.
  • TMAEMA-grafted ePTFE showed superior performance by killing 99.78% of bacteria and effectively releasing dead bacteria upon treatment with saline solution, highlighting its potential in combating pathogens.
View Article and Find Full Text PDF

Membrane technology is an essential tool for water treatment and biomedical applications. Despite their extensive use in these fields, polymeric-based membranes still face several challenges, including instability, low mechanical strength, and propensity to fouling. The latter point has attracted the attention of numerous teams worldwide developing antifouling materials for membranes and interfaces.

View Article and Find Full Text PDF

While green solvents are being implemented in the fabrication of polyvinylidene fluoride (PVDF) membranes, most are not compatible with the vapor-induced phase separation (VIPS) process for which relatively low dissolution temperatures are required. Additionally, preparing antifouling green membranes in one step by blending the polymer with an antifouling material before inducing phase separation remains extremely challenging due to the solubility issues. Here, the green solvent triethyl phosphate (TEP) was used to solubilize both PVDF and a copolymer (synthesized from styrene monomer and poly(ethylene glycol) methyl ether methacrylate).

View Article and Find Full Text PDF

Although energy-demanding, the surface modification of polytetrafluoroethylene (PTFE) for biomedical applications is mandatory to mitigate irreversible biofouling that occurs whenever PTFE comes into contact with biological fluids. Here, we propose to take advantage of the adhesive properties of dopamine (DA) and of the antifouling ability of various zwitterionic monomers (sulfobetaine methacrylate (SBMA), sulfobetaine methacrylamide (SBAA), sulfobetaine acrylamide (SBAA'), and 4-vinylpyridine propylsulfobetaine (4VPPS)) and form antifouling coatings by copolymerization on the surface of expanded PTFE membranes. This simple, low-energy, and one-step coating procedure arises in significant biofouling mitigation.

View Article and Find Full Text PDF

This study introduces a zwitterionic material to modify polysulfone (PSf) membranes formed by a dual bath procedure, in view of reducing their fouling propensity. The zwitterionic copolymer, derived from a random polymer of styrene and 4-vinylpyrridine and referred to as zP(S--4VP), was incorporated to the PSf solution without any supplementary pore-forming additive to study the effect of the sole copolymer on membrane-structuring, chemical, and arising properties. XPS and mapping FT-IR provided evidence of the modification.

View Article and Find Full Text PDF