Publications by authors named "A Vanet"

Background: The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment.

View Article and Find Full Text PDF

The most advanced antiviral molecules addressing major SARS-CoV-2 targets (Main protease, Spike protein, and RNA polymerase), compared with proteins of other human pathogenic coronaviruses, may have a short-lasting clinical efficacy. Accumulating knowledge on the mechanisms underlying the target structural basis, its mutational progression, and the related biological significance to virus replication allows envisaging the development of better-targeted therapies in the context of COVID-19 epidemic and future coronavirus outbreaks. The identification of evolutionary patterns based solely on sequence information analysis for those targets can provide meaningful insights into the molecular basis of host-pathogen interactions and adaptation, leading to drug resistance phenomena.

View Article and Find Full Text PDF

Immune dysregulation is among the main adverse outcomes of spaceflight. Despite the crucial role of the antibody repertoire in host protection, the effects of spaceflight on the human antibody repertoire are unknown. Consequently, using high-throughput sequencing, we examined the IgM repertoire of five cosmonauts 25 days before launch, after 64 ± 11 and 129 ± 20 days spent on the International Space Station (ISS), and at 1, 7, and 30 days after landing.

View Article and Find Full Text PDF

The RNA virus influenza A is a serious public health problem, with epidemics resulting in more than 250 000 deaths every year. A protein cavity was identified on the HA2 subunit of the hemagglutinin responsible for the entry of the virus into the host cell by endocytosis. The binding of a ligand in this zone rich in invariant residues and synthetic lethal couples could prevent therapeutic escape and inhibit the conformational change at pH = 5 which is necessary to initiate the membrane fusion in the endosome.

View Article and Find Full Text PDF

Spaceflights are known to affect the immune system. In a previous study, we demonstrated that hypergravity exposure during murine development modified 85% of the T-cell receptor (TCR)-β repertoire. In this study, we investigated whether socioenvironmental stressors encountered during space missions affect T lymphopoiesis and the TCR-β repertoire.

View Article and Find Full Text PDF