A first-time survey across 15 cancer centers in Ontario, Canada, on the current practice of patient-specific quality assurance (PSQA) for intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) delivery was conducted. The objectives were to assess the current state of PSQA practice, identify areas for potential improvement, and facilitate the continued improvement in standardization, consistency, efficacy, and efficiency of PSQA regionally. The survey asked 40 questions related to PSQA practice for IMRT/VMAT delivery.
View Article and Find Full Text PDFPurpose: The aim was to determine whether the enhanced soft tissue contrast provided by high-dose volumetric CT (HDVCT) can reduce inter-observer variability in delineating prostate compared to helical conventional CT (CCT) scans and 3T MRI scans for patients undergoing radical prostate cancer radiotherapy. Secondly, to quantify the potential PTV reduction with decreased inter-observer variability.
Materials And Methods: A 320 slice volumetric CT scanner was used.
We have developed a four-dimensional weighted radiotherapy (4DW-RT) technique. This method involves designing the motion of the linear accelerator beam to coincide with the tumour motion determined from 4D-CT imaging while including a weighting factor to account for irregular motion and limitations of the delivery system. Experiments were conducted with a moving phantom to assess limitations of the delivery system when applying this method.
View Article and Find Full Text PDFWe present treatment planning methods based on four-dimensional computed tomography (4D-CT) to incorporate tumour motion using (1) a static field and (2) a dynamic field. Static 4D fields are determined to include the target in all breathing phases, whereas dynamic 4D fields are determined to follow the shape of the tumour assessed from 4D-CT images with a dynamic weighting factor. The weighting factor selection depends on the reliability of patient breathing and limitations of the delivery system.
View Article and Find Full Text PDFIt is demonstrated that by using a multimode fiber Bragg grating, the oscillation wavelength of semiconductor lasers can be selected by adjusting the alignment between the laser diode and multimode fiber. Wavelength locking with high output power and narrow linewidth can be realized in both static and dynamic states.
View Article and Find Full Text PDF