The real-time prediction and estimation of the spread of diseases, such as COVID-19 is of paramount importance as evidenced by the recent pandemic. This work is concerned with the distributed parameter estimation of the time-space propagation of such diseases using a diffusion-reaction epidemiological model of the susceptible-exposed-infected-recovered (SEIR) type. State estimation is based on continuous measurements of the number of infections and deaths per unit of time and of the host spatial domain.
View Article and Find Full Text PDFIn this work, the application of a model-free extremum seeking strategy is investigated to achieve the hypothetical control of the covid-19 pandemics by acting on social distancing. The advantage of this procedure is that it does not rely on the accurate knowledge of an epidemiological model and takes realistic constraints into account, such as hospital capacities. The simulation study reveals that the convergence has two time scales, with a fast catch of the transient optimum of the measurable cost function, followed by a slow tracking of this optimum following the original SIR dynamics.
View Article and Find Full Text PDFA new approach for determining optimal operating conditions for simulated moving bed chromatographic processes is presented. The method is based on recursive online estimation and requires only rough initial estimates. It is based on a simple foot point model of the moving concentration fronts and an online measurement of the corresponding retention times in the different zones of the plant.
View Article and Find Full Text PDFThe anaerobic digestion (AD) technology is widely used in the treatment of waste and wastewater. To ensure the treatment efficiency and to increase the production of biogas, which can be reused as a renewable energy source, a good understanding of the process and tight control are needed. This paper presents an estimation and control scheme, which can be successfully used in the operation of the AD process.
View Article and Find Full Text PDFThis study presents an evaluation of the hydrolytic activity of a continuous thermophilic anaerobic reactor in long-term operation. The hydrolytic coefficient was estimated by fitting a three-reaction model of the anaerobic digestion process with experimental data obtained from a pilot thermophilic digester operated for about 2 years. The model fitting and the cross-validation indicate that this model can represent the behavior of the system in a proper way; moreover, the results show a variation of the hydrolytic capacity of the system throughout the evaluation period.
View Article and Find Full Text PDF