Skin contamination by α-emitting actinides such as plutonium and americium is a risk for workers during nuclear fuel production and reactor decommissioning. Decontamination of skin is an important medical countermeasure to limit potential internal contamination, particularly in the case of injured skin. Current recommendations include undressing of the victim followed by skin washing using soap or chelating agents, such as diethylene triamine pentaacetic acid (DTPA).
View Article and Find Full Text PDFMikrochim Acta
March 2024
The objective of this work was to develop an actinide-specific monolithic support in capillary designed to immobilize precise Pu:Am ratios and its coupling to inductively coupled plasma mass spectrometry (ICP-MS) for immobilized metal affinity chromatography applications. This format offers many advantages, such as reducing the sample amount and waste production, which are of prime importance when dealing with highly active radioelements. Four organic phosphorylated-based monoliths were synthesized in situ through UV photo-polymerization in capillary and characterized.
View Article and Find Full Text PDFFilter swipe tests are used for routine analyses of actinides in nuclear industrial, research, and weapon facilities as well as following accidental release. Actinide physicochemical properties will determine in part bioavailability and internal contamination levels. The aim of this work was to develop and validate a new approach to predict actinide bioavailability recovered by filter swipe tests.
View Article and Find Full Text PDFSpeciation of actinides, and more particularly bioligand-binding ability, influences in vivo behavior. Understanding these interactions is essential for estimation of radiological dose and improvement of decorporation strategies for accidentally contaminated victims. Because the handling of actinides imposes overwhelming difficulties, in vitro assays carried out in physiological conditions are lacking and data regarding such interactions are scarce.
View Article and Find Full Text PDFFollowing accidental inhalation of radioactive cobalt particles, the poorly soluble and highly radioactive CoO particles are retained for long periods in lungs. To decrease their retention time is of crucial importance to minimize radiation-induced damage. As dissolved cobalt is quickly transferred to blood and eliminated by urinary excretion, enhancing the dissolution of particles would favor Co elimination.
View Article and Find Full Text PDF