The aim of the study to compare the performance of two major source types involved in the imaging of the electric activity of the heart on the basis of potential differences observed on the thorax. The images depict either the timing of activation and repolarization of the myocardium or the potential field on a surface closely encompassing the myocardium. The depolarization and repolarization timing on a closed surface bounding the ventricular myocardium was derived from measured body surface potentials (BSPs), an MRI-based electric volume conductor model comprising the geometry of thorax, lungs, heart surface Sh, and cavities.
View Article and Find Full Text PDFThis contribution discusses the QRS-T angle as well as the QRST integral map. Both of these topics have been tested in their application in extracting the major features of depolarization and repolarization: their spatio-temporal behaviour, and how much of their global or local nature might be deduced from signals that can be observed clinically. Recently, it is in particular the QRS-T angle that has received considerable attention, a method that stems directly from vectorcardiography, a subdomain of electrocardiography.
View Article and Find Full Text PDFJ Electrocardiol
July 2014
This contribution discusses the feasibility of extracting the major features of repolarization: its spatio-temporal behaviour, and how much of its global or local behaviour might be deduced from signals that can be observed experimentally. The analysis presented is based on source-volume-conductor configurations ranging from the classic cable theory, with sources derived from reaction diffusion computations, to a realistic thorax model comprising a whole heart model with electric sources represented by the equivalent electric double layer. The analysis focuses on the fact that the local activation recovery interval (ARI) at regions activated by expanding wave fronts is significantly longer than those activated by contracting ones.
View Article and Find Full Text PDFPurpose: In this first-in-human study of AEE788, a tyrosine kinase inhibitor of epidermal growth factor receptor (EGFR), HER-2, and VEGFR-2, a comprehensive pharmacodynamic program was implemented in addition to the evaluation of safety, pharmacokinetics, and preliminary efficacy of AEE788 in cancer patients.
Experimental Design: Patients with advanced, solid tumors received escalating doses of oral AEE788 once daily. Primary endpoints were to determine dose-limiting toxicities (DLTs) and maximum-tolerated dose (MTD).