Publications by authors named "A Van Hoof"

Premature ovarian insufficiency (POI) is characterised by the loss or complete absence of ovarian activity in women under the age of 40. Clinical presentation of POI varies with phenotypic severity ranging from premature loss of menses to complete gonadal dysgenesis. POI is genetically heterogeneous with >100 causative gene variants identified thus far.

View Article and Find Full Text PDF
Article Synopsis
  • - Eukaryotic genomes usually have one enzyme from the DXO/Dxo1/Rai1 family that helps break down non-standard RNA ends, while some yeasts have two copies, including Dxo1, which is essential for processing 25S rRNA.
  • - The study finds that the ability to process 25S rRNA evolved specifically in budding yeasts, not in other organisms, and this developed alongside a gene duplication event.
  • - Interestingly, different types of budding yeasts have independently evolved similar traits by duplicating their DXO/Dxo1/Rai1 gene and allowing one copy to gain new functions for processing 25S rRNA, illustrating a case of parallel evolution.
View Article and Find Full Text PDF

The RNA exosome is an evolutionarily conserved complex required for both precise RNA processing and decay. Pathogenic variants in EXOSC genes, which encode structural subunits of this complex, are linked to several autosomal recessive disorders. Here, we describe a missense allele of the EXOSC4 gene that causes a collection of clinical features in two affected siblings.

View Article and Find Full Text PDF

The ribosome is the central hub for protein synthesis and the target of many antibiotics. Although the majority of ribosome-targeting antibiotics inhibit protein synthesis and are bacteriostatic, aminoglycosides promote protein mistranslation and are bactericidal. Understanding the resistance mechanisms of bacteria against aminoglycosides is not only vital for improving the efficacy of this critically important group of antibiotics but also crucial for studying the molecular basis of translational fidelity.

View Article and Find Full Text PDF

Some eukaryotic pre-tRNAs contain an intron that is removed by a dedicated set of enzymes. Intron-containing pre-tRNAs are cleaved by tRNA splicing endonuclease, followed by ligation of the two exons and release of the intron. Fungi use a "heal and seal" pathway that requires three distinct catalytic domains of the tRNA ligase enzyme, Trl1.

View Article and Find Full Text PDF