The transplantation of mesenchymal stem cells (MSCs) proves to be useful to treat pathologies in which tissue damage is linked to oxidative stress (OS). The aim of our work was to evaluate whether primary human MSCs (hMSCs) can manage OS. For this, in vitro we assessed the following parameters: (1) cell viability of hMSCs exposed to increasing concentrations of reactive oxygen species (ROS; source: hydrogen peroxide), reactive nitrogen species (RNS; source: S-nitroso-N-acetylpenicillamine), or both (ROS and RNS; source: 3-morpholinosydnonimine hydrochloride); (2) intracellular level of reactive species in hMSCs exposed to ROS and RNS; (3) basal gene expression and activity of superoxide dismutases, catalase, and glutathione peroxidase of hMSCs; (4) basal level of total glutathione (GSx) of hMSCs; and (5) cell viability of GSx-depleted hMSCs exposed to ROS and/or RNS.
View Article and Find Full Text PDFAnimals selectively bred for a desirable trait retain wanted genes but exclude genes that may counteract the expression of the former. The possible interactions between selected and excluded genes cannot be readily studied in transgenic or knockout animals but may be addressed by crossing animals bred for opposite traits and studying the F2 offspring. Ninety-seven percent of Wistar-derived rats selectively bred for their voluntary low-alcohol consumption display a mutated nuclear allele of aldehyde dehydrogenase Aldh22 that encodes an enzyme with a low affinity for NAD+, whereas rats bred for high-alcohol consumption do not present the Aldh22 allele.
View Article and Find Full Text PDFGenetic factors influence alcohol consumption and alcoholism. A number of groups have bred alcohol drinker and non drinker rat strains, but genetic determinants remain unknown. The University of Chile rat lines UChA (low drinkers) and UChB (high drinkers) display differences in the relative K(m) for NAD+ of mitochondrial aldehyde dehydrogenase (ALDH2) but no V(max) differences.
View Article and Find Full Text PDF