Introduction: The clinical efficacy of specific interleukin-6 inhibitors has confirmed the central role of IL6 in rheumatoid arthritis (RA). However the local role of IL6, in particular in synovial fibroblasts (SF) as a direct cellular target to IL6/sIL6R signal is not well characterized. The purpose of the study was to characterize the crosstalk between TNFα and IL6/sIL6R signaling to the effector pro-inflammatory response of SF.
View Article and Find Full Text PDFBackground: Accumulation of senescent cells has been associated with pro-inflammatory effects with deleterious consequences in different human diseases. The purpose of this study was to analyze cell senescence in human synovial tissues (ST), and its impact on the pro-inflammatory function of synovial fibroblasts (SF).
Results: The expression of the senescence marker p16INK4a (p16) was analyzed by immunohistochemistry in rheumatoid arthritis (RA), osteoarthritis (OA), and normal ST from variably aged donors.
Increased glycolysis and HIF-1α activity are characteristics of cells under hypoxic or inflammatory conditions. Besides, in normal O environments, elevated rates of glycolysis support critical cellular mechanisms such as cell survival. The purpose of this study was to analyze the contribution of HIF-1α to the energy metabolism and survival of human synovial fibroblasts (SF) under normoxic conditions.
View Article and Find Full Text PDFChronic inflammation is a common process connecting pathologies that vary in their etiology and pathogenesis such as cancer, autoimmune diseases, and infections. The response of the immune system to tissue damage involves a carefully choreographed series of cellular interactions between immune and non-immune cells. In recent years, it has become clear that stromal resident cells have an essential role perpetuating the inflammatory environment and dictating in many cases the outcome of inflammatory based pathologies.
View Article and Find Full Text PDFThe transition of paused RNA polymerase II into productive elongation is a highly dynamic process that serves to fine-tune gene expression in response to changing cellular environments. We have recently reported that the transcription factor Sp3 inhibits the transition of paused RNA Pol II to productive elongation at the promoter of the cyclin-dependent kinase inhibitor p21(CIP1) and other Sp3-repressed genes. Our studies support the view that Sp3 has three modes of action: activation, SUMO-Sp3-mediated heterochromatin silencing and SUMO-independent inhibition of elongation.
View Article and Find Full Text PDF