Publications by authors named "A Valdes-Hernandez"

The study of entanglement in systems composed of identical particles raises interesting challenges with far-reaching implications in both, our fundamental understanding of the physics of composite quantum systems, and our capability of exploiting quantum indistinguishability as a resource in quantum information theory. Impressive theoretical and experimental advances have been made in the last decades that bring us closer to a deeper comprehension and to a better control of entanglement. Yet, when it involves composites of indistinguishable quantum systems, the very meaning of entanglement, and hence its characterization, still finds controversy and lacks a widely accepted definition.

View Article and Find Full Text PDF

A measure D [ t 1 , t 2 ] for the amount of dynamical evolution exhibited by a quantum system during a time interval [ t 1 , t 2 ] is defined in terms of how distinguishable from each other are, on average, the states of the system at different times. We investigate some properties of the measure D showing that, for increasing values of the interval's duration, the measure quickly reaches an asymptotic value given by the linear entropy of the energy distribution associated with the system's (pure) quantum state. This leads to the formulation of an entropic variational problem characterizing the quantum states that exhibit the largest amount of dynamical evolution under energy constraints given by the expectation value of the energy.

View Article and Find Full Text PDF

When an initially entangled pair of qubits undergoes local decoherence processes, there are a number of ways in which the original entanglement can spread throughout the multipartite system consisting of the two qubits and their environments. Here, we report theoretical and experimental results regarding the dynamics of the distribution of entanglement in this system. The experiment employs an all optical setup in which the qubits are encoded in the polarization degrees of freedom of two photons, and each local decoherence channel is implemented with an interferometer that couples the polarization to the path of each photon, which acts as an environment.

View Article and Find Full Text PDF

The dynamics of the environment is usually experimentally inaccessible and hence ignored for open systems. Here we overcome this limitation by using an interferometric setup that allows the implementation of several decoherence channels and full access to all environmental degrees of freedom. We show that when a qubit from an entangled pair interacts with the environment, the initial bipartite entanglement gets redistributed into bipartite and genuine multipartite entanglements involving the two qubits and the environment.

View Article and Find Full Text PDF