The anti-TRAP protein (AT) of Bacillus subtilis regulates expression of the trp operon and other genes concerned with tryptophan metabolism. AT acts by inhibiting the tryptophan-activated trp RNA-binding attenuation protein (TRAP). AT is an oligomer of identical 53-residue polypeptides; it is produced in response to the accumulation of uncharged tRNA(Trp).
View Article and Find Full Text PDFIn Bacillus subtilis, the trp RNA-binding attenuation protein (TRAP) regulates expression of genes involved in tryptophan metabolism in response to the accumulation of l-tryptophan. Tryptophan-activated TRAP negatively regulates expression by binding to specific mRNA sequences and either promoting transcription termination or blocking translation initiation. Conversely, the accumulation of uncharged tRNA(Trp) induces synthesis of an anti-TRAP protein (AT), which forms a complex with TRAP and inhibits its activity.
View Article and Find Full Text PDFAn anti-TRAP (AT) protein, a factor of previously unknown function, conveys the metabolic signal that the cellular transfer RNA for tryptophan (tRNATrp) is predominantly uncharged. Expression of the operon encoding AT is induced by uncharged tRNATrp. AT associates with TRAP, the trp operon attenuation protein, and inhibits its binding to its target RNA sequences.
View Article and Find Full Text PDFMicrobiology (Reading)
November 1999
aprX is a 1326 bp gene of Bacillus subtilis strain 168 that encodes a serine protease, probably intracellular, characterized by significant similarity with subtilisins, thermitases and pyrolysins. Transcription analysis, performed by RT-PCR and primer extension, allowed the localization of the active promoter and showed that aprX is expressed in stationary phase. The pattern of expression of aprX and its dependence on various transition state regulatory genes (degU, degQ, hpr, abrB, sinR), monitored by lacZ transcriptional fusions, are distinctive from those of subtilisin and other degradative enzymes.
View Article and Find Full Text PDFWe have cloned and sequenced the nrd (nucleotide reductase) locus of Bacillus subtilis. The locus seems to be organized in an operon comprising four ORFs. The first three encode polypeptides highly similar to the product of the coding sequences characterizing the nrdEF operons of Enterobacteriaceae.
View Article and Find Full Text PDF