Publications by authors named "A Vagts"

Efficient signaling requires accurate spatial and temporal compartmentalization of proteins. RACK1 is a scaffolding protein that fulfils this role through interaction of binding partners with one of its seven WD40 domains. We recently identified the kinase Fyn and the NR2B subunit of the N-methyl-D-Aspartate receptor (NMDAR) as binding partners of RACK1.

View Article and Find Full Text PDF

Background: Previously, we found that acute ethanol induces the translocation of the scaffolding protein RACK1 to the nucleus. Recently, we found that nuclear RACK1 mediates acute ethanol induction of immediate early gene c-fos expression. Alterations in gene expression are thought to lead to long-term changes that ultimately contribute to the development of alcohol addiction and toxicity.

View Article and Find Full Text PDF

A large-scale effort, termed the Secreted Protein Discovery Initiative (SPDI), was undertaken to identify novel secreted and transmembrane proteins. In the first of several approaches, a biological signal sequence trap in yeast cells was utilized to identify cDNA clones encoding putative secreted proteins. A second strategy utilized various algorithms that recognize features such as the hydrophobic properties of signal sequences to identify putative proteins encoded by expressed sequence tags (ESTs) from human cDNA libraries.

View Article and Find Full Text PDF

Scaffolding proteins such as receptor for activated C kinase (RACK) 1 are involved in the targeting of signaling proteins and play an important role in the regulation of signal transduction cascades. Recently, we found that in cultured cells and in vivo, acute ethanol exposure induces the nuclear compartmentalization of RACK1. To elucidate a physiological role for nuclear RACK1, the Tat protein transduction system was used to transduce RACK1 and RACK1-derived fragments into C6 glioma cells.

View Article and Find Full Text PDF

Phosphorylation regulates the function of ligand-gated ion channels such as the N-methyl d-aspartate (NMDA) receptor. Here we report a mechanism for modulation of the phosphorylation state and function of the NMDA receptor via an inhibitory scaffolding protein, RACK1. We found that RACK1 binds both the NR2B subunit of the NMDA receptor and the nonreceptor protein tyrosine kinase, Fyn.

View Article and Find Full Text PDF