We have studied the effect of chronic thyroid status alterations on the myosin heavy chain (MyHC) isoform composition (by SDS-PAGE) and on MyHC mRNA levels (by RT-PCR) in the fast extensor digitorum longus (EDL) muscle of 7-month-old inbred Lewis strain female rats and compared this with corresponding results of the previously studied slow soleus muscle. Our findings show that in the EDL muscle, all four types 1, 2a, 2x/d and 2b of MyHC mRNA transcripts and protein isoforms are present in euthyroid, hypothyroid and hyperthyroid rats, i.e.
View Article and Find Full Text PDFSkeletal muscles of small rodents contain four main fiber types, namely type 1, 2A, 2X/D and 2B fibers containing myosin heavy chain (MyHC) 1, 2a, 2x/d and 2b isoforms. Each of these MyHC isoforms is the product of a distinct gene and their expression is believed to be primarily transcriptionally controlled. In most rat muscles, messenger RNA (mRNA) transcripts for MyHC1, 2a, 2x/d and 2b and their corresponding protein products were found with the exception of the soleus muscle, where typically only MyHC1 and 2a transcripts and protein isoforms were demonstrated under normal conditions.
View Article and Find Full Text PDFTo reveal the effect of foreign innervation and altered thyroid status on fiber type composition and the myosin heavy chain (MyHC) isoform expression in the rat slow soleus (SOL) and fast extensor digitorum longus (EDL) muscles, a method of heterochronous isotransplantation was developed. In this experimental procedure, the SOL or EDL muscles of young inbred Lewis rats are grafted either into the host EDL or SOL muscles of adult rats of the same strain with normal or experimentally altered thyroid status. To estimate the extent of fiber type transitions in the transplanted muscles, the SOL and EDL muscle from the unoperated leg and unoperated muscles from the operated leg could be legitimately used as controls, but only when the experimental procedure itself does not affect these muscles.
View Article and Find Full Text PDFIt has been previously shown that modification of thyroid hormone levels have a profound impact on cardiac function, predominantly through a direct regulation of the sarcoplasmic reticulum protein levels. Nevertheless, little is known about the regulation of calcium transport systems in skeletal muscle due to the altered concentration of thyroid hormones. Thus, the goal of our study was to find out whether altered thyroid status could change the gene expression of the Na(+)/Ca(2+) exchanger (NCX), the inositol 1,4,5-trisphosphate (IP(3)) receptors and ryanodine receptors (RyRs) in slow and fast skeletal muscles of rats.
View Article and Find Full Text PDFMuscle phenotype is determined by combined effects of intrinsic genetic and extrinsic factors like innervation, hormonal levels and mechanical factors or muscle activity. We have been studying the effect of altered thyroid hormone levels on the expression of myosin heavy chain (MyHC) isoforms in control and regenerating soleus and extensor digitorum longus muscles of euthyroid, hypothyroid or hyperthyroid female inbred Lewis rats. The fiber type composition has been determined according to the mATPase activity and immunocytochemical staining of MyHC isoforms, the content of MyHC isoforms has been determined by SDS-PAGE, the mRNA levels have been measured by RT-PCR and the ultrastructural transformation has been analyzed by electron-microscopy.
View Article and Find Full Text PDF