Publications by authors named "A V Yakimova"

Objective: Traditional cell-based radiobiological methods are inadequate for assessing the toxicity of ionizing radiation exposure in relation to the microstructure of the extracellular matrix. Organotypic tissue slices preserve the spatial organization observed in vivo, making the tissue easily accessible for visualization and staining. This study aims to explore the use of fluorescence microscopy of physiologically compatible 3D tissue cultures to assess the effects of ionizing radiation.

View Article and Find Full Text PDF

We studied the effects of single and combined action of protons and carbon ions C on the pool of MCF-7 human breast cancer stem cells. Single irradiation with a beam of protons or carbon ions had no significant effects on the relative number of cancer stem cells (CSC). The effects of combined irradiation in a total equieffective dose of 4 Gy depended on the sequence of exposure to ionizing radiations: the relative number of CSC did not change after irradiation with carbon ions and then with protons, but increased in the case of the reverse sequence.

View Article and Find Full Text PDF

Immune responses to tissue-engineered grafts made of xenogeneic materials remain poorly studied. The scope of current investigations is limited by the lack of information on orthotopically implanted grafts. A deeper understanding of these processes is of great importance since innovative surgical approaches include the implantation of xenogeneic decellularized scaffolds seeded by cells.

View Article and Find Full Text PDF

Treatment of a wide variety of defects in the oral and maxillofacial regions requires the use of innovative approaches to achieve best outcomes. One of the promising directions is the use of gene-activated materials (GAMs) that represent a combination of tissue engineering and gene therapy. This approach implies that biocompatible materials will be enriched with gene-carrying vectors and implanted into the defect site resulting in transfection of the recipient's cells and secretion of encoded therapeutic protein in situ.

View Article and Find Full Text PDF

This article reports the electrospinning technique for the manufacturing of multilayered scaffolds for bile duct tissue engineering based on an inner layer of polycaprolactone (PCL) and an outer layer either of a copolymer of D,L-lactide and glycolide (PLGA) or a copolymer of L-lactide and ε-caprolactone (PLCL). A study of the degradation properties of separate polymers showed that flat PCL samples exhibited the highest resistance to hydrolysis in comparison with PLGA and PLCL. Irrespective of the liquid-phase nature, no significant mass loss of PCL samples was found in 140 days of incubation.

View Article and Find Full Text PDF