A formation of a molten globule in the unfolding of ribonuclease A could be considered as an evidence supporting a hypothesis on the existence of such intermediates on the pathway of a protein folding. Using a novel technique (tritium labeling method) we have showed that the ribonuclease A equilibrium unfolding in urea and guanidinium chloride (GuCl) solutions proceeds through a formation of intermediates whose properties (compactness, retention of the larger part hydrophobic core, secondary structure, and native-like folding pattern) correspond to the fundamental characteristics of the molten globule state. The both intermediates are the "wet" molten globules (the globule interior contains the water molecules).
View Article and Find Full Text PDFA new method for obtaining HIV-I protease was suggested. Fusion proteins composed of the N-terminal fragment of human gamma-interferon and HIV-I protease connected with (Asp)4Lys (protein I) or Asp-Pro (protein II) linkers were expressed in Escherichia coli cells. The fusion proteins were produced as insoluble inclusion bodies in the 20% yield of total cell protein.
View Article and Find Full Text PDFResults are presented for proteins with known three-dimensional structure (lysozyme, myoglobin, ribonuclease), which show that the probability of label incorporation upon bombardment by "hot" tritium atoms may be quantitatively linked with the surface area of the protein accessible to water molecules. Possible deviations from simple linear dependency caused by particular mechanisms of label introduction are discussed. The data obtained in experiments with model systems were used to determine the accessible surface area of human serum albumin, for which structural data is not sufficiently accurate to allow estimation of accessible surface area.
View Article and Find Full Text PDF