This roadmap reviews the new, highly interdisciplinary research field studying the behavior of condensed matter systems exposed to radiation. The Review highlights several recent advances in the field and provides a roadmap for the development of the field over the next decade. Condensed matter systems exposed to radiation can be inorganic, organic, or biological, finite or infinite, composed of different molecular species or materials, exist in different phases, and operate under different thermodynamic conditions.
View Article and Find Full Text PDFIrradiation-driven fragmentation and chemical transformations of molecular systems play a key role in nanofabrication processes where organometallic compounds break up due to the irradiation with focused particle beams. In this study, reactive molecular dynamics simulations have been performed to analyze the role of the molecular environment on the irradiation-induced fragmentation of molecular systems. As a case study, we consider the dissociative ionization of iron pentacarbonyl, Fe(CO), a widely used precursor molecule for focused electron beam-induced deposition.
View Article and Find Full Text PDFThe growth of iron-containing nanostructures in the process of focused electron beam-induced deposition (FEBID) of Fe(CO) is studied by means of atomistic irradiation-driven molecular dynamics (IDMD) simulations. The geometrical characteristics (lateral size, height and volume), morphology and metal content of the grown nanostructures are analyzed at different irradiation and precursor replenishment conditions corresponding to the electron-limited and precursor-limited regimes (ELR & PLR) of FEBID. A significant variation of the deposit's morphology and elemental composition is observed with increasing the electron current from 1 to 4 nA.
View Article and Find Full Text PDFNeuromorphic computing systems may be the future of computing and cluster-based networks are a promising architecture for the realization of these systems. The creation and dissolution of synapses between the clusters are of great importance for their function. In this work, we model the thermal breakage of a gold nanofilament located between two gold nanoparticles via molecular dynamics simulations to study on the mechanisms of neuromorphic nanoparticle-based devices.
View Article and Find Full Text PDFFunctionalized metal nanoparticles (NPs) have been proposed as promising radiosensitizing agents for more efficient radiotherapy treatment using photons and ion beams. Radiosensitizing properties of NPs may depend on many different parameters (such as size, composition, and density) of the metal core, the organic coatings, and the molecular environment. A systematic exploration of each of these parameters on the atomistic level remains a formidable and costly experimental task, but it can be addressed by means of advanced computational modeling.
View Article and Find Full Text PDF