Solution-processed perovskite solar cells (PSCs) have demonstrated a tremendous growth in power conversion efficiency (PCE). A high-quality, defect-free perovskite-based active layer is a key point to enhance PSC performance. Introduction of additives and interlayers have proved to be an effective tool to passivate surface defects, control crystal growth, and improve PSC stability.
View Article and Find Full Text PDFFunctional nanostructures build up a basis for the future materials and devices, providing a wide variety of functionalities, a possibility of designing bio-compatible nanoprobes, etc. However, development of new nanostructured materials via trial-and-error approach is obviously limited by laborious efforts on their syntheses, and the cost of materials and manpower. This is one of the reasons for an increasing interest in design and development of novel materials with required properties assisted by machine learning approaches.
View Article and Find Full Text PDFAlthough chirality plays an important role in the natural world, it has also attracted much scientific attention in nanotechnology, in particular, spintronics and bioapplications. Chiral carbon dots (CDs) are promising nanoparticles for sensing and bioimaging since they are biocompatible, ecofriendly, and free from toxic elements. Herein, green and red emissive chiral CDs are fabricated via surface modification treatment of achiral CDs at room temperature.
View Article and Find Full Text PDFThe formation of red-emissive optical centers in carbon dots based on citric acid and formamide was investigated by varying the synthesis parameters with focus on finding optimal─necessary and sufficient─amount of precursors to decrease byproduct amount and to increase the chemical yield of red-emissive carbon dots. The emission is observed at 640 nm excited at 590 nm and quantum yield reaches up 19%. A high chemical yield of carbon dots of 26% was achieved at an optimal molar ratio of citric acid to formamide of 1:4.
View Article and Find Full Text PDFCarbon dots can be used for the fabrication of colloidal multi-purpose complexes for sensing and bio-visualization due to their easy and scalable synthesis, control of their spectral responses over a wide spectral range, and possibility of surface functionalization to meet the application task. Here, we developed a chemical protocol of colloidal complex formation via covalent bonding between carbon dots and plasmonic metal nanoparticles in order to influence and improve their fluorescence. We demonstrate how interactions between carbon dots and metal nanoparticles in the formed complexes, and thus their optical responses, depend on the type of bonds between particles, the architecture of the complexes, and the degree of overlapping of absorption and emission of carbon dots with the plasmon resonance of metals.
View Article and Find Full Text PDF