Publications by authors named "A V Vasil'kov"

Bacterial infection can hinder the infected wound healing process. Because of the growing drug-resistance bacteria, there is an urgent desire to develop alternative antibacterial strategies to the antibiotics. Herein, the quaternized chitosan coated CuS (CuS-QCS) nanozyme with peroxidase (POD)-like activity was developed through a facile biomineralized approach for synergistic efficient antibacterial therapy and wound healing.

View Article and Find Full Text PDF

Au and Fe nanoparticles and their conjugates with the drug methotrexate were obtained by an environmentally safe method of metal-vapor synthesis (MVS). The materials were characterized by transmission and scanning electron microscopy (TEM, SEM), X-ray photoelectron spectroscopy (XPS), and small-angle X-ray scattering using synchrotron radiation (SAXS). The use of acetone as an organic reagent in the MVS makes it possible to obtain Au and Fe particles with an average size of 8.

View Article and Find Full Text PDF

Sustained interest in the use of renewable resources for the production of medical materials has stimulated research on bacterial cellulose (BC) and nanocomposites based on it. New Ag-containing nanocomposites were obtained by modifying various forms of BC with Ag nanoparticles prepared by metal-vapor synthesis (MVS). Bacterial cellulose was obtained in the form of films (BCF) and spherical BC beads (SBCB) by the GH-1/2008 strain under static and dynamic conditions.

View Article and Find Full Text PDF

New hybrid materials based on Ag nanoparticles stabilized by a polyaminopropylalkoxysiloxane hyperbranched polymer matrix were prepared. The Ag nanoparticles were synthesized in 2-propanol by metal vapor synthesis (MVS) and incorporated into the polymer matrix using metal-containing organosol. MVS is based on the interaction of extremely reactive atomic metals formed by evaporation in high vacuum (10-10 Torr) with organic substances during their co-condensation on the cooled walls of a reaction vessel.

View Article and Find Full Text PDF

New functional medical materials with antibacterial activity based on biocompatible bacterial cellulose (BC) and Ag nanoparticles (Ag NPs) were obtained. Bacterial cellulose films were prepared by stationary liquid-phase cultivation of the strain GH-1/2008 in Hestrin-Schramm medium with glucose as a carbon source. To functionalize the surface and immobilize Ag NPs deposited by magnetron sputtering, BC films were treated with low-pressure oxygen-nitrogen plasma.

View Article and Find Full Text PDF