Publications by authors named "A V Tverskoi"

Alzheimer's disease (AD) is a complex neurodegenerative disease with no existing treatment leading to full recovery. The blood-brain barrier (BBB) breakdown usually precedes the advent of first symptoms in AD and accompanies the progression of the disease. At the same time deliberate BBB opening may be beneficial for drug delivery in AD.

View Article and Find Full Text PDF

The Alzheimer's disease (AD)-associated breakdown of the blood-brain barrier (BBB) promotes the accumulation of beta-amyloid peptide (Aβ) in the brain as the BBB cells provide Aβ transport from the brain parenchyma to the blood, and vice versa. The breakdown of the BBB during AD may be caused by the emergence of blood-borne Aβ pathogenic forms, such as structurally and chemically modified Aβ species; their effect on the BBB cells has not yet been studied. Here, we report that the effects of Aβ, Aβ, containing isomerized Asp7 residue (iso-Aβ) or phosphorylated Ser8 residue (p-Aβ) on the mitochondrial potential and respiration are closely related to the redox status changes in the mouse brain endothelial cells bEnd.

View Article and Find Full Text PDF

In vitro blood-brain barrier (BBB) modeling with the use of the brain endothelial cells grown on a transwell membrane is widely used to investigate BBB disorders and factors intended to ameliorate these pathologies. Endothelial cells, due to tight junction proteins, ensure selective permeability for a number of substances. The low integrity (i.

View Article and Find Full Text PDF

Beta-amyloid (Aβ) has a dual role, both as an important factor in the pathology of Alzheimer's disease and as a regulator in brain physiology. The inhibitory effect of Aβ oligomers on Na,K-ATPase contributes to neuronal dysfunction in Alzheimer's disease. Still, the physiological role of the monomeric form of Aβ interaction with Na,K-ATPase remains unclear.

View Article and Find Full Text PDF

The soft and delicate tissue of the brain, which is the center of our coordination, is protected by its surrounding layers. The disruption of these layers results in complicated situations and serious health problems. The brain has three protective layers of bone or skull tissue, the blood tissue layer, and finally the meningeal layer.

View Article and Find Full Text PDF