Background: Chronic brain dyscirculation is one of the frequent type 2 diabetes mellitus (DM) complications and leads to patients' disability. Sodium-glucose co-transporter type 2 inhibitors (SGLT-2i) have been proven to have advantages for cardiovascular system, but their effect on the central nervous system (CNS) has not been studied enough.
Aim: To study empagliflozin effect on CNS damage functional and laboratory parameters in patients with type 2 DM and, under experimental conditions, to investigate the mechanisms of the drug neurotropic effect.
Background: Acute and chronic brain damage in type 2 diabetes mellitus (DM) determines the need to investigate the neuroprotective potential of glucose-lowering drugs. The purpose was to directly compare the neuroprotective effects of glucagon-like peptide-1 receptor agonists (GLP-1RAs) with different duration of action and sodium-glucose cotransporter-2 inhibitors (SGLT-2i) in type 2 diabetic rats with and without stroke.
Methods: DM was modelled using high-fat diet and nicotinamide+streptozotocin protocol.
Metformin is a first-line drug for DM2 treatment and prevention, but its complex effect on impaired glucose tolerance (IGT), including its influence on myocardial resistance to ischemia-reperfusion injury, is not completely studied. We aimed to evaluate the influence of metformin on the intestinal microbiota (IM), metabolism, and functional and morphological characteristics of myocardium in rats with IGT. IGT was modelled in SPF Wistar rats with a high-fat diet and streptozotocin and nicotinamide injection.
View Article and Find Full Text PDFWe evaluated associations between serum 25-hydroxyvitamin D [25(OH)D] level and severity of new coronavirus infection (COVID-19) in hospitalized patients. We assessed serum 25(OH)D level in 133 patients aged 21-93 years. Twenty-five (19%) patients had severe disease, 108 patients (81%) had moderate disease, and 18 (14%) patients died.
View Article and Find Full Text PDFImpaired glucose tolerance (IGT) increases cardiovascular risk and can enlarge myocardial infarction (MI) incidence and severity. There is lack of information about cardioprotective potential of glucose-lowering drugs in IGT. We aimed to evaluate the sustainability of myocardium to ischemia-reperfusion injury in diabetic and IGT rats and to study cardioprotective action of metformin and liraglutide.
View Article and Find Full Text PDF