Background: Early coronary occlusion detection by portable personal device with limited number of electrocardiographic (ECG) leads might shorten symptom-to-balloon time in acute coronary syndromes.
Objectives: The purpose of this study was to compare the accuracy of coronary occlusion detection using vectorcardgiographic analysis of a near-orthogonal 3-lead ECG configuration suitable for credit card-size personal device integration with automated and human 12 lead ECG interpretation.
Methods: The 12-lead ECGs with 3 additional leads ("abc") using 2 arm and 2 left parasternal electrodes were recorded in 66 patients undergoing percutaneous coronary intervention prior to ("baseline", n = 66), immediately before ("preinflation", n = 66), and after 90-second balloon coronary occlusion ("inflation", n = 120).
Objective: To investigate the impact of atrial flutter (A) in the atrial arrhythmias classification task. We additionally advocate the use of a subject-based split for future studies in the field in order to avoid within-subject correlation which may lead to over-optimistic inferences. Finally, we demonstrate the effectiveness of the classifiers outside of the initially studied circumstances, by performing an inter-dataset model evaluation of the classifiers in data from different sources.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Atrial fibrillation (AF) and atrial flutter (AFL) represent atrial arrhythmias closely related to increasing risk for embolic stroke, and therefore being in the focus of cardiologists. While the reported methods for AF detection exhibit high performances, little attention has been given to distinguishing these two arrhythmias. In this study, we propose a deep neural network architecture, which combines convolutional and recurrent neural networks, for extracting features from sequence of RR intervals.
View Article and Find Full Text PDF