RNA interference (RNAi)-based therapeutics hold the potential for dominant genetic disorders, enabling sequence-specific inhibition of pathogenic gene products. We aimed to direct RNAi for the selective suppression of the heterozygous c.607 G > A variant causing encephalopathy.
View Article and Find Full Text PDFDuchenne muscular dystrophy (DMD) is a severe hereditary disease caused by a deficiency in the dystrophin protein. The most frequent types of disease-causing mutations in the DMD gene are frameshift deletions of one or more exons. Precision genome editing systems such as CRISPR-Cas9 have shown potential to restore open reading frames in numerous animal studies.
View Article and Find Full Text PDFα-Helical secondary structures impart specific mechanical and physiochemical properties to peptides and proteins, enabling them to perform a vast array of molecular tasks ranging from membrane insertion to molecular allostery. Loss of α-helical content in specific regions can inhibit native protein function or induce new, potentially toxic, biological activities. Thus, identifying specific residues that exhibit loss or gain of helicity is critical for understanding the molecular basis of function.
View Article and Find Full Text PDFGNAO1 encephalopathy is an orphan genetic disease associated with early infantile epilepsy, impaired motor control, and severe developmental delay. The disorder is caused by mutations in the GNAO1 gene, leading to dysfunction of the encoded protein Gao1. There is no cure for this disease, and symptomatic therapy is ineffective.
View Article and Find Full Text PDF