Publications by authors named "A V Shernyukov"

Being a low-toxic and hydrophilic representative of TAM, OX063 has shown its suitability for in-vivo and in-cell EPR experiments and design of spin labels. Using C labeling, we investigated the course of oxidative degradation of OX063 into quinone-methide (QM) under the influence of superoxide as well as further thiol-promoted reduction of QM into TAM radical, which formally corresponds to substitution of a carboxyl function by a hydroxyl group. We found these transformations being quantitative in model reactions mimicking specific features of biological media and confirmed the presence of these reactions in the blood and liver homogenate of mice in vitro.

View Article and Find Full Text PDF

Dynamic nuclear polarization (DNP) utilizing narrow-line electron spin clusters (ESCs) to achieve nuclear spin resonance matching (ESC-DNP) by microwave irradiation is a promising way to achieve NMR signal enhancements with a wide design scope requiring low microwave power at high magnetic field. Here we present the design for a trityl-based tetra-radical (TetraTrityl) to achieve DNP for H NMR at 7 T, supported by experimental data and quantum mechanical simulations. A slow-relaxing ( ≈ 1 ms) 4-ESC is found to require at least two electron spin pairs at <8 Å e-e spin distance to yield H ESC-DNP enhancement, while squeezing the rest of the e-e spin distances to <12 Å results in optimal H ESC-DNP enhancements.

View Article and Find Full Text PDF

The combination of fluorine labeling and pulsed electron-nuclear double resonance (ENDOR) is emerging as a powerful technique for obtaining structural information about proteins and nucleic acids. In this work, we explored the capability of Mims F ENDOR experiments on reporting intermolecular distances in trityl- and F-labeled DNA duplexes at three electron paramagnetic resonance (EPR) frequencies (34, 94, and 263 GHz). For spin labeling, we used the hydrophobic Finland trityl radical and hydrophilic OX063 trityl radical.

View Article and Find Full Text PDF

8-Oxo-7,8-dihydroguanine (oxoG), an abundant DNA lesion, can mispair with adenine and induce mutations. To prevent this, cells possess DNA repair glycosylases that excise either oxoG from oxoG:C pairs (bacterial Fpg, human OGG1) or A from oxoG:A mispairs (bacterial MutY, human MUTYH). Early lesion recognition steps remain murky and may include enforced base pair opening or capture of a spontaneously opened pair.

View Article and Find Full Text PDF

Noncatalytic halogenation of adamantane (AdH) with bromine or iodine monochloride was found to proceed according to the cluster mechanism featuring high kinetic order with respect to the halogen and a sharp decrease in the calculated energy barrier when additional halogen molecules are involved in the quantum chemical system. In the reaction with Br, 1-AdBr formed selectively. This reaction proved to be first order in terms of AdH and approximately seventh order in Br, and its rate does not depend on the rising concentration of HBr.

View Article and Find Full Text PDF