Publications by authors named "A V Shatskikh"

DEAD-box RNA helicase Vasa is required for gonad development and fertility in multiple animals. Vasa is implicated in many crucial aspects of oogenesis, including translation regulation, primordial germ cell specification, piRNA silencing of transposable elements, and maintenance of germline stem cells (GSCs). However, data about Vasa functions in spermatogenesis remain controversial.

View Article and Find Full Text PDF

Species of the genus have served as favorite models in speciation studies; however, genetic factors of interspecific reproductive incompatibility are under-investigated. Here, we performed an analysis of hybrid female sterility by crossing females and males. Using transcriptomic data analysis and molecular, cellular, and genetic approaches, we analyzed differential gene expression, transposable element (TE) activity, piRNA biogenesis, and functional defects of oogenesis in hybrids.

View Article and Find Full Text PDF

Argonaute proteins, guided by small RNAs, play crucial roles in gene regulation and genome protection through RNA interference (RNAi)-related mechanisms. Ribosomal RNAs (rRNAs), encoded by repeated rDNA units, constitute the core of the ribosome being the most abundant cellular transcripts. rDNA clusters also serve as sources of small RNAs, which are loaded into Argonaute proteins and are able to regulate rDNA itself or affect other gene targets.

View Article and Find Full Text PDF

Vasoproliferative retinal tumor (VPT) is a term proposed by ophthalmologists in relation to the totality of manifestations of an intraocular volumetric process with involvement of the inner lining of the eye, an integral part of which is the active growth of blood vessels. The available literature data on the morphology of this process are very contradictory and ambiguous. The article presents two clinical cases of vasoproliferative retinal tumor with own illustration of morphological studies.

View Article and Find Full Text PDF

The heterochromatin position effect is manifested in the inactivation of euchromatin genes transferred to heterochromatin. In chromosomal rearrangements, genes located near the new eu-heterochromatin boundary in the rearrangement (cis-inactivation) and, in rare cases, genes of a region of the normal chromosome homologous to the region of the eu-heterochromatin boundary of the chromosome with the rearrangement (trans-inactivation) are subject to inactivation. The In(2)A4 inversion is able to trans-inactivate the UAS-eGFP reporter gene located on the normal chromosome.

View Article and Find Full Text PDF