The quantum key distribution (QKD) allows two remote users to share a common information-theoretic secure secret key. In order to guarantee the security of a practical QKD implementation, the physical system has to be fully characterized and all deviations from the ideal protocol due to various imperfections of realistic devices have to be taken into account in the security proof. In this work, we study the security of the efficient decoy-state BB84 QKD protocol in the presence of the source flaws, caused by imperfect intensity and polarization modulation.
View Article and Find Full Text PDFUnlike stroke, neurosurgical removal of left-hemisphere gliomas acts upon a reorganized language network and involves brain areas rarely damaged by stroke. We addressed whether this causes the profiles of neurosurgery- and stroke-induced language impairments to be distinct. K-means clustering of language assessment data (neurosurgery cohort: N = 88, stroke cohort: N = 95) identified similar profiles in both cohorts.
View Article and Find Full Text PDFPulses at 744 nm with 90 fs duration, 6 mJ energy, and a weakly divergent wavefront propagate for more than 100 m and generate a filament followed by an unprecedently long high intensity (≥1/) light channel. Over a 20 m long sub-section of this channel, the pulse energy is transferred continuously to the infrared wing, forming spectral humps that extend up to 850 nm. From 3D+time carrier-resolved simulations of 100 m pulse propagation, we show that spectral humps indicate the formation of a train of femtosecond pulses appearing at a predictable position in the propagation path.
View Article and Find Full Text PDFThe left frontal aslant tract (FAT) has been proposed to be relevant for language, and specifically for spontaneous speech fluency. However, there is missing causal evidence that stimulation of the FAT affects spontaneous speech, and not language production in general. We present a series of 12 neurosurgical cases with awake language mapping of the cortex near the left FAT.
View Article and Find Full Text PDFThe influence of plasma channel length on an angular terahertz (THz) radiation distribution is experimentally studied for the channel formed under filamentation of an ultrashort laser pulse. It is shown that the angular distribution of the THz emission depends only on laser intensity in the filament and plasma density of the plasma channel and does not depend on the plasma channel length. A qualitative explanation of the THz emission screening by the filament plasma channel is proposed.
View Article and Find Full Text PDF