Vavilovskii Zhurnal Genet Selektsii
July 2024
The effect of stress in pregnant female Wistar rats on the behavior and lipid peroxidation (LP) in the neocortex, hippocampus and hypothalamus in the female F2 generation during the ovarian cycle was investigated. We subjected pregnant females to daily 1-hour immobilization stress from the 15th to the 19th days of pregnancy. Further, family groups were formed from prenatally stressed and control male and female rats of the F1 generation: group 1, the control female and male; group 2, the control female and the prenatally stressed male; group 3, the prenatally stressed female and the control male; group 4, the prenatally stressed female and male.
View Article and Find Full Text PDFThe activity of glutathione-associated antioxidant enzymes in subcellular fractions (cytosolic, mitochondrial, and cell nucleus fractions) was investigated in the liver of adult male Wistar rats born after prenatal stress was. Two groups of animals were studied in the experiment: (1) control group included - animals was born by intact mothers, and (2) prenatal stress group included animals whose mothers were subjected to immobilization stress in high-light conditions from the 15th to the 19th day of pregnancy. The activity of glutathione peroxidase (EC 1.
View Article and Find Full Text PDFRoss Fiziol Zh Im I M Sechenova
August 2012
We studied the influence of late prenatal stress on free radical oxidation processes in Sprague-Dawley rats cortex, striatum, hippocampus, hypothalamus proteins. It was shown that after prenatal stress most changes were observed in hypothalamus and hippocampus. It was shown that in hypothalamus spontaneous oxidation level increased, but level of induced oxidation decreased, the opposite changes were found in hippocampus.
View Article and Find Full Text PDFThe processes of free-radical oxidation of proteins and lipids and superoxide dismutase activity were studied in neurons and neuroglia of the cerebral cortex in rats during ontogenesis and after prenatal stress. Regardless of age, normal animals were found to have higher levels of free-radical lipid and protein oxidation in neurons than in glia. This same pattern was also observed in relation to superoxide dismutase.
View Article and Find Full Text PDFProcesses of free radical oxidation of protein, lipids, and activity of superoxiddismutase in neurons and glial cells of the rat brain cortex in ontogenesis and after prenatal stress. Irrespective of age, the level of free radical oxidation of lipids and proteins in neurons is higher in comparison with the glia. The same was found in the study of superoxiddismutase activity.
View Article and Find Full Text PDF