Internal modifications of mRNA have emerged as widespread and versatile regulatory mechanism to control gene expression at the post-transcriptional level. Most of these modifications are methyl groups, making S-adenosyl-L-methionine (SAM) a central metabolic hub. Here we show that metabolic labeling with a clickable metabolic precursor of SAM, propargyl-selenohomocysteine (PSH), enables detection and identification of various methylation sites.
View Article and Find Full Text PDF6S RNA, a small non-coding RNA present in almost all bacteria, inhibits transcription via direct binding to RNA polymerase holoenzymes. The mechanism of 6S RNA action was investigated to a large extent in , however, lack of 6S RNA (Δ) was demonstrated to be unfavorable but not essential for cell survival under various growth conditions. In the present study, we revealed, for the first time, a lethal phenotype of the Δ strain in the presence of high concentrations of HO.
View Article and Find Full Text PDFThe RNA methyltransferase (MTase) complex METTL3-METTL14 transfers methyl groups from S-adenosyl-l-methionine (AdoMet) to the N-position of adenosines within its consensus sequence, the DRACH motif (D=A, G, U; R=A, G; H=A, C, U). Interestingly, this MTase complex shows remarkable promiscuity regarding the cosubstrate. This can be exploited to install nonnatural modifications, like clickable or photocaging groups.
View Article and Find Full Text PDF