Objectives: In recent years, periodontitis, and dental caries have become common in humans and need to be diagnosed in the early stage to prevent severe complications and tooth loss. These dental issues are diagnosed by visual inspection, measuring pocket probing depth, and radiographs findings from experienced dentists. Though a glut of machine learning (ML) algorithms has been proposed for the automated detection of periodontitis, and dental caries, determining which ML techniques are suitable for clinical practice remains under debate.
View Article and Find Full Text PDFInt J Biomed Imaging
August 2012
We develop two Feldkamp-type reconstruction algorithms with no backprojection weight for circular and helical trajectory with planar detector geometry. Advances in solid-state electronic detector technologies lend importance to CT systems with the equispaced linear array, the planar (flat panel) detectors, and the corresponding algorithms. We derive two exact Hilbert filtered backprojection (FBP) reconstruction algorithms with no backprojection weight for 2D fan-beam equispace linear array detector geometry (complement of the equi-angular curved array detector).
View Article and Find Full Text PDF