Antibiotic-resistant bacteria, ESKAPE pathogens, present a significant and alarming threat to public health and healthcare systems. This study addresses the urgent need to combat antimicrobial resistance by exploring alternative ways to reduce the health and cost implications of infections caused by these pathogens. To disrupt their transmission, integrating antimicrobial textiles into personal protective equipment (PPE) is an encouraging avenue.
View Article and Find Full Text PDFThermophysiological comfort is known to play a primary role in maintaining thermal balance, which corresponds to a person's satisfaction with their immediate thermal environment. Among the existing test methods, sweating torsos are one of the best tools to provide a combined measurement of heat and moisture transfer using non-isothermal conditions. This study presents a preliminary numerical model of a single sector sweating torso to predict the thermophysiological comfort properties of fabric systems.
View Article and Find Full Text PDFThe World Health Organization has advocated mandatory face mask usage to combat the spread of COVID-19, with multilayer masks recommended for enhanced protection. However, this recommendation has not been widely adopted, with noncompliant persons citing discomfort during prolonged usage of face masks. And yet, a scientific understanding on how face mask fabrics/garment systems affect thermophysiological comfort remains lacking.
View Article and Find Full Text PDFInfection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E.
View Article and Find Full Text PDFJ Appl Microbiol
November 2021
Aims: The use of microbial fuel cells (MFC) to treat winery wastewater is promising; however, an initial acidic pH, fluctuating chemical oxygen demand (COD) levels and a lack of natural buffering in these wastewaters make providing a suitable buffer system at an ideal buffer to COD ratio.
Methods And Results: A lab scale MFC was designed, inoculated with anaerobic winery sludge and fed with synthetic winery wastewater. It was observed that at pH 6·5, the MFC performed best, the maximum output voltage was 0·63 ± 0·01 V for 60 ± 3 h, and the COD removal efficiency reached 77 ± 7%.