This paper examines the effect of finite attractive and repulsive interactions on the self-assembly of triangular-shaped particles on a triangular lattice. The ground state analysis of the lattice model has revealed an infinite sequence of ordered structures, a phenomenon referred to as the 'devil's staircase' of phase transitions. The model has been studied at finite temperatures using both the transfer-matrix and tensor renormalization group methods.
View Article and Find Full Text PDFA simple lattice model of the orientational ordering in organic adsorption layers that considers the directionality of intermolecular interactions is proposed. The symmetry and the number of rotational states of the adsorbed molecule are the main parameters of the model. The model takes into account both the isotropic and directional contributions to the molecule-molecule interaction potential.
View Article and Find Full Text PDFA series of models for reversible filling of a triangular lattice with equilateral triangles has been developed and investigated. There are eight distinct models that vary in the set of prohibitions. In zeroth approximation, these models allow one to estimate the influence of the particles' shape and complementarity of their pair configurations on the self-assembly of dense monolayers formed by reversible filling.
View Article and Find Full Text PDFA simple lattice model of metal-organic adsorption layers self-assembling on a Au(111) surface and based on pyridyl-substituted porphyrins differing in the number of functional groups and their position has been proposed. The model has been parameterized using DFT methods. The ground state analysis of the considered model demonstrates the variety of surface-confined metal-organic networks (SMONs) containing square, linear, and discrete elements appearing in the adsorption layer depending on the partial pressure of the components.
View Article and Find Full Text PDFWe present to the scientific community the Surface Science Modeling and Simulation Toolkit (SuSMoST), which includes a number of utilities and implementations of statistical physics algorithms and models. With SuSMoST it is possible to predict or explain the structure and thermodynamic properties of adsorption layers. SuSMoST automatically builds formal graph and tensor-network models based on atomic description of adsorption complexes and helps to do ab initio calculations of interactions between adsorbed species.
View Article and Find Full Text PDF