Understanding and controlling the electrical properties of solution-processed 2D materials is key to further printed electronics progress. Here, we demonstrate that the thermolysis of the aromatic intercalants utilized in nanosheet exfoliation for graphene laminates allows for high intrinsic mobility and the simultaneous control of doping type (- and -) and concentration over a wide range. We establish that the intraflake mobility is high by observing a linear magnetoresistance of such solution-processed graphene laminates and using it to devolve the interflake tunneling and intralayer magnetotransport.
View Article and Find Full Text PDFIn the present work, tetrahedrite CuSbS thin films were deposited on various substrates via aerosol-assisted chemical vapor deposition (AACVD) using diethyldithiocarbamate complexes as precursors. A buffer layer of SbO with a small lattice mismatch to CuSbS was applied to one of the glass substrates to improve the quality of the deposited thin film. The buffer layer increased the coverage of the CuSbS thin film, resulting in improved electrical transport properties.
View Article and Find Full Text PDFVan der Waals heterostructures have opened new opportunities to develop atomically thin (opto)electronic devices with a wide range of functionalities. The recent focus on manipulating the interlayer twist angle has led to the observation of out-of-plane room temperature ferroelectricity in twisted rhombohedral bilayers of transition metal dichalcogenides. Here we explore the switching behaviour of sliding ferroelectricity using scanning probe microscopy domain mapping and tunnelling transport measurements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2024
High-quality Cu(Zn,Fe,Cd)SnS (CZFCTS) thin films based on the parent CZTS were prepared by aerosol-assisted chemical vapor deposition (AACVD). Substitution of Zn by Fe and Cd significantly improved the electrical transport properties, and monophasic CZFCTS thin films exhibited a maximum power factor (PF) of ∼0.22 μW cm K at 575 K.
View Article and Find Full Text PDFOrthorhombic SnS exhibits excellent thermoelectric performance as a consequence its relatively high Seebeck coefficient and low thermal conductivity. In the present work, polycrystalline orthorhombic SnS thin films were prepared by aerosol-assisted chemical vapor deposition (AACVD) using the single source precursor dibutyl-(diethyldithiocarbamato)tin(IV) [Sn(CH)(SCN(CH))]. We examined the effects of the processing parameters on the composition, microstructure, and electrical transport properties of the SnS films.
View Article and Find Full Text PDF