Extracellular vesicles (EVs) are of growing interest in the context of screening for highly informative cancer markers. We have previously shown that uterine aspirate EVs (UA EVs) are a promising source of ovarian cancer (OC) diagnostic markers. In this study, we first conducted an integrative analysis of EV-miRNA profiles from UA, malignant ascitic fluid (AF), and a conditioned medium of cultured ascites cells (ACs).
View Article and Find Full Text PDFResistance of tumor cells to retinoic acid (RA), a promising therapeutic agent, is the major factor limiting the use of RA in clinical practice. The mechanisms of resistance to RA are still poorly understood. Cellular Retinoic Acid Binding Proteins, CRABP1 and CRABP2, are essential mediators of RA signaling, but role of the two CRABP homologs in regulating cellular sensitivity to RA has not been well studied.
View Article and Find Full Text PDFSecreted extracellular vesicles (EVs) contain active biomolecules, including miRNAs, composition of which reflects epigenetic changes occurring in cells during pathological processes, in particular, malignant transformation. The accumulated pool of data on the role of EVs in carcinogenesis has stimulated investigations of the EV-derived cancer markers. The most important factor limiting development of this scientific direction is lack of "gold standards" both for methods of EV isolation from biological fluids and for analyzing their molecular content, including composition of miRNAs.
View Article and Find Full Text PDFEVs are involved in local and distant intercellular communication and play a vital role in cancer development. Since EVs have been found in almost all body fluids, there are currently active attempts for their application in liquid diagnostics. Blood is the most commonly used source of EVs for the screening of cancer markers, although the percentage of tumor-derived EVs in the blood is extremely low.
View Article and Find Full Text PDF