Biomed Khim
September 2024
Eighty years ago, the Institute of Biomedical Chemistry (IBMC) initially known as the Institute of Biological and Medical Chemistry of the Academy of Sciences of the USSR was founded. During the first decades significant studies were performed; they not only contributed to a deeper understanding of biochemical processes in the living organisms, but also laid the foundation for further development of these fields. The main directions of IBMC were focused on studies of structures of enzymes (primarily various proteases), their substrates and inhibitors, the role of enzymes of carbohydrate metabolism in the development of pathologies, study of the mechanisms of hydrolytic and oxidative-hydrolytic transformation of organic compounds, studies of connective tissue proteins, including collagens, study of amino acid metabolism.
View Article and Find Full Text PDFPolystyrene-based support Bio-Beads SM-2 was employed for desalting peptide-p-nitroanilides from Oxone. Neither tosyl, 9-fluorenyl(methoxycarbonyl), p-nitroanilide groups nor indolyl or p-hydroxyphenyl side-chains of Trp and Tyr ensured an efficient adsorption of peptide-p-nitroanilides onto Bio-Beads SM-2. Only unsubstituted phenyl-containing protection groups (carbobenzoxy or benzoyl) and Phe residues provided the adsorption of peptides on Bio-Beads SM-2 and their efficient desalting.
View Article and Find Full Text PDFBiomolecules
August 2021
The glutarylation of lysine residues in proteins attracts attention as a possible mechanism of metabolic regulation, perturbed in pathologies. The visualization of protein glutarylation by antibodies specific to ε-glutaryl-lysine residues may be particularly useful to reveal pathogenic mutations in the relevant enzymes. We purified such antibodies from the rabbit antiserum, obtained after sequential immunization with two artificially glutarylated proteins, using affinity chromatography on ε-glutaryl-lysine-containing sorbents.
View Article and Find Full Text PDF