Organised data is easy to use but the rapid developments in the field of bioimaging, with improvements in instrumentation, detectors, software and experimental techniques, have resulted in an explosion of the volumes of data being generated, making well-organised data an elusive goal. This guide offers a handful of recommendations for bioimage depositors, analysts and microscope and software developers, whose implementation would contribute towards better organised data in preparation for archival. Based on our experience archiving large image datasets in EMPIAR, the BioImage Archive and BioStudies, we propose a number of strategies that we believe would improve the usability (clarity, orderliness, learnability, navigability, self-documentation, coherence and consistency of identifiers, accessibility, succinctness) of future data depositions more useful to the bioimaging community (data authors and analysts, researchers, clinicians, funders, collaborators, industry partners, hardware/software producers, journals, archive developers as well as interested but non-specialist users of bioimaging data).
View Article and Find Full Text PDFBiological imaging is one of the primary tools by which we understand living systems across scales from atoms to organisms. Rapid advances in imaging technology have increased both the spatial and temporal resolutions at which we examine those systems, as well as enabling visualisation of larger tissue volumes. These advances have huge potential but also generate ever increasing amounts of imaging data that must be stored and analysed.
View Article and Find Full Text PDFVolume electron microscopy (vEM) techniques produce scientifically important datasets which are time and resource intensive to generate (Peddie et al., 2022). Public archival of such datasets, usually described in the literature, provides many benefits to the data depositors, to those making use of research results based on the datasets, and to the vEM community at large, both now and in the future.
View Article and Find Full Text PDFPublic archiving in structural biology is well established with the Protein Data Bank (PDB; wwPDB.org) catering for atomic models and the Electron Microscopy Data Bank (EMDB; emdb-empiar.org) for 3D reconstructions from cryo-EM experiments.
View Article and Find Full Text PDFBioimaging data have significant potential for reuse, but unlocking this potential requires systematic archiving of data and metadata in public databases. We propose draft metadata guidelines to begin addressing the needs of diverse communities within light and electron microscopy. We hope this publication and the proposed Recommended Metadata for Biological Images (REMBI) will stimulate discussions about their implementation and future extension.
View Article and Find Full Text PDF