Objectives: Home-based hematopoietic stem cell transplantation (HCT) is a novel approach that has the potential to improve outcomes, however, the impact of transplant location on the gut microbiome remains uncharacterized. We hypothesized that patients randomized to undergo home HCT would have higher gut taxonomic diversity and lower antimicrobial resistance (AMR) gene abundance compared to those undergoing standard hospital HCT.
Methods: We identified 28 patients enrolled in Phase II randomized trials of home (n=16) v.
We present replication-aware single-molecule accessibility mapping (RASAM), a method to nondestructively measure replication status and protein-DNA interactions on chromatin genome-wide. Using RASAM, we uncover a genome-wide state of single-molecule "hyperaccessibility" post-replication that resolves over several hours. Combining RASAM with cellular models for rapid protein degradation, we demonstrate that histone chaperone CAF-1 reduces nascent chromatin accessibility by filling single-molecular "gaps" and generating closely spaced dinucleosomes on replicated DNA.
View Article and Find Full Text PDF