In recent years, hydrogels have been demonstrated as simple and cheap additives to improve the optical properties and material stability of organometal halide perovskites (OHPs), with most research centered on the use of hydrophilic, petrochemical-derived polymers. Here, we investigate the role of a peptide hydrogel in passivating defect sites and improving the stability of methylammonium lead iodide (MAPI, CHNHPbI) using closely controlled, X-ray photoelectron spectroscopy (XPS) techniques under realistic pressures. Optical measurements reveal that a reduction in the density of defect sites is achieved by incorporating peptide into the precursor solution during the conventional one-step MAPI fabrication approach.
View Article and Find Full Text PDFThe cellular response to endoplasmic reticulum (ER) stress accompanies plasma cell maturation and is one of triggers and cofactors of the local inflammatory response. Chemical chaperones, low-molecular substances that eliminate pathological ER stress, are proposed as means of treating pathologies associated with ER stress. The aim of this study was to evaluate the effect and mechanisms of influence of chemical chaperones on the humoral response in a low-dose model of allergy.
View Article and Find Full Text PDFThe implementation of sputter-deposited TiO as an electron transport layer in nonfullerene acceptor-based organic photovoltaics has been shown to significantly increase the long-term stability of devices compared to conventional solution-processed ZnO due to a decreased photocatalytic activity of the sputtered TiO. In this work, we utilize synchrotron-based photoemission and absorption spectroscopies to investigate the interface between the electron transport layer, TiO prepared by magnetron sputtering, and the nonfullerene acceptor, ITIC, prepared in situ by spray deposition to study the electronic state interplay and defect states at this interface. This is used to unveil the mechanisms behind the decreased photocatalytic activity of the sputter-deposited TiO and thus also the increased stability of the organic solar cell devices.
View Article and Find Full Text PDFFlexPES is a soft X-ray beamline on the 1.5 GeV storage ring at MAX IV Laboratory, Sweden, providing horizontally polarized radiation in the 40-1500 eV photon energy range and specializing in high-resolution photoelectron spectroscopy, fast X-ray absorption spectroscopy and electron-ion/ion-ion coincidence techniques. The beamline is split into two branches currently serving three endstations, with a possibility of adding a fourth station at a free port.
View Article and Find Full Text PDFThe f-driven temperature scales at the surfaces of strongly correlated materials have increasingly come into the focus of research efforts. Here, we unveil the emergence of a two-dimensional Ce Kondo lattice, which couples ferromagnetically to the ordered Co lattice below the P-terminated surface of the antiferromagnet CeCoP. In its bulk, Ce is passive and behaves tetravalently.
View Article and Find Full Text PDF