Understanding the exact mechanisms of the activation of proinflammatory immune response receptors is very important for the targeted regulation of their functioning. In this work, we were able to identify the sites of the molecules in the proinflammatory cytokine TNF (tumor necrosis factor) and its TNFR1 (tumor necrosis factor receptor 1), which are necessary for the two-stage cytotoxic signal transduction required for tumor cell killing. A 12-membered TNFR1 peptide was identified and synthesized, interacting with the ligands of this receptor protein's TNF and Tag7 and blocking their binding to the receptor.
View Article and Find Full Text PDFAcquired amegakaryocytic thrombocytopenia (AAMT) is a rare cause of thrombocytopenia seen in systemic lupus erythematosus (SLE) that is frequently misdiagnosed as immune thrombocytopenic purpura (ITP). Often patients do not respond to standard ITP treatment. Prompt bone marrow biopsy and further workup should ensue as it is a diagnosis of exclusion.
View Article and Find Full Text PDFHigh mobility group protein (HMGB1) is secreted by myeloid cells and cells of damaged tissues during inflammation, causing inflammatory reactions through various receptors, including TLR and RAGE. TREM-1 is considered to be one of the potential HMGB1 receptors. In this work, we have shown that the HMGB1 protein is able to bind to the TREM-1 receptor at high affinity both in solution and on the cell surface.
View Article and Find Full Text PDFThe PBAF chromatin remodeling complex of the SWI/SNF family plays a critical role in the regulation of gene expression during tissue differentiation and organism development. The subunits of the PBAF complex have domains responsible for binding to N-terminal histone sequences. It determines the specificity of binding of the complex to chromatin.
View Article and Find Full Text PDFDokl Biochem Biophys
December 2023
The PBAF chromatin remodeling complex regulates chromatin state and gene transcription in higher eukaryotes. In this work, we studied the role of PBAF in the regulation of NF-κB-and JAK/STAT-dependent activation of inflammatory genes. We performed knockdown of specific module subunit BAF200, which resulted in destruction of the entire PBAF specific module and changed the level of the genes transcription of both pathways.
View Article and Find Full Text PDF