Publications by authors named "A V Feofanov"

Advanced molecular probes are required to study the functional activity of the Kv1.2 potassium channel in normal and pathological conditions. To address this, a fully active Kv1.

View Article and Find Full Text PDF

The natural polyphenol resveratrol is a biologically active compound that interacts with DNA and affects the activity of some nuclear enzymes. Its effect on the interaction between nucleosomes and poly(ADP-ribose) polymerase-1 (PARP1) and on the catalytic activity of PARP1 was studied using Western blotting, spectrophotometry, electrophoretic mobility shift assay, and single particle Förster resonance energy transfer microscopy. Resveratrol inhibited PARP1 activity at micro- and sub-micromolar concentrations, but the inhibitory effect decreased at higher concentrations due to the aggregation of the polyphenol.

View Article and Find Full Text PDF

HMO1 is an architectural nuclear DNA-binding protein that stimulates the activity of some remodelers and regulates the transcription of ribosomal protein genes, often binding to a DNA motif called IFHL. However, the molecular mechanism dictating this sequence specificity is unclear. Our circular dichroism spectroscopy studies show that the HMO1:DNA complex forms without noticeable changes in the structure of DNA and HMO1.

View Article and Find Full Text PDF
Article Synopsis
  • A new compound, NI-SP, was created by linking a styrylpyridinium dye and a naphthalimide fluorophore using a "click" chemistry method.
  • NI-SP shows a selective fluorescent response to mercury (Hg) in water, with the efficiency of detection improved through resonance energy transfer (RET) and intramolecular charge transfer (ICT).
  • In biological tests, NI-SP was found to enter human lung cancer cells and effectively measure mercury levels within a concentration range of 0.7-6.0 μM.
View Article and Find Full Text PDF

During various DNA-centered processes in the cell nucleus, the minimal structural units of chromatin organization, nucleosomes, are often transiently converted to hexasomes and tetrasomes missing one or both H2A/H2B histone dimers, respectively. However, the structural and functional properties of the subnucleosomes and their impact on biological processes in the nuclei are poorly understood. Here, using biochemical approaches, molecular dynamics simulations, single-particle Förster resonance energy transfer (spFRET) microscopy and NMR spectroscopy, we have shown that, surprisingly, removal of both dimers from a nucleosome results in much higher mobility of both histones and DNA in the tetrasome.

View Article and Find Full Text PDF