The influence of the coherence of far-red (730 nm) light on the functional activity of plants was studied. Blackberry explants cultivated in vitro on an artificial nutrient medium served as a biological model. The explants were irradiated with light beams with different spatial and temporal coherence.
View Article and Find Full Text PDFThe effect of the statistical properties of light on the value of the photoinduced reaction of the biological objects, which differ in the morphological and physiological characteristics, the optical properties, and the size of cells, was studied. The fruit of apple trees, the pollen of cherries, the microcuttings of blackberries in vitro, and the spores and the mycelium of fungi were irradiated by quasimonochromatic light fluxes with identical energy parameters but different values of coherence length and radius of correlation. In all cases, the greatest stimulation effect occurred when the cells completely fit in the volume of the coherence of the field, while both temporal and spatial coherence have a significant and mathematically certain impact on the physiological activity of cells.
View Article and Find Full Text PDF