Publications by authors named "A V Bodnaruk"

Formation of functional thin films for nanoelectronics and magnetic data storage via thermally induced diffusion-driven structural phase transformations in multilayer stacks is a promising technology-relevant approach. Ferromagnetic thin films based on Co Pt alloys are considered as a material science platform for the development of various applications such as spin valves, spin orbit torque devices, and high-density data storage media. Here, we study diffusion processes in Pt-Co-based stacks with the focus on the effect of layers inversion (Pt/Co/substrate versus Co/Pt/substrate) and insertion of an intermediate Au layer on the structural transitions and magnetic properties.

View Article and Find Full Text PDF

Different processes governing magnetic properties of an ensemble of magnetic nanoparticles in the temperature region close to a transition from superparamagnetic to paramagnetic state are analyzed and the ways to separate them are suggested. Enhanced role of paraprocess in magnetization behavior near Curie temperature is stressed. A procedure to isolate paraprocess contribution and adequately determine spontaneous magnetization of the ensemble of superparamagnetic nanoparticles is proposed.

View Article and Find Full Text PDF

Magnetic nanoparticles constitute promising tools for addressing medical and health-related issues based on the possibility to obtain various kinds of responses triggered by safe remote stimuli. However, such richness can be detrimental if different performances are not adequately differentiated and controlled. The aim of this work is to understand and systemize different kinds of magnetic-field-induced response for an ensemble of lanthanum-strontium manganite nanoparticles, which are considered as promising materials for self-controlled magnetic hyperthermia.

View Article and Find Full Text PDF

Two sets of Nd-doped LaSrMnO nanoparticles were synthesized via sol-gel method with further heat treatment at 1073 and 1573 K, respectively. Crystallographic and magnetic properties of obtained nanoparticles were studied, and the effect of synthesis conditions on these properties was investigated. According to X-ray data, all particles crystallized in the distorted perovskite structure.

View Article and Find Full Text PDF