Publications by authors named "A Usikov"

The quality of graphene intended for use in biosensors was assessed on manufactured chips using a set of methods including atomic force microscopy (AFM), Raman spectroscopy, and low-frequency noise investigation. It is shown that local areas of residues on the graphene surface, formed as a result of the interaction of graphene with a photoresist at the initial stage of chip development, led to a spread of chip resistance (R) in the range of 1-10 kOhm and to an increase in the root mean square (RMS) roughness up to 10 times, which can significantly worsen the reproducibility of the parameters of graphene chips for biosensor applications. It was observed that the control of the photoresist residues after photolithography (PLG) using AFM and subsequent additional cleaning reduced the spread of R values in chips to 1-1.

View Article and Find Full Text PDF

Among the most significant challenges presented to modern medicine is the problem of cognitive disorders. The relevance of her research is determined by the wide spread of disorders of the higher cortical functions, their significant negative impact on the quality of life of patients, as well as high economic costs on the part of the state and the patient's relatives aimed at organizing medical, diagnostic and rehabilitation processes. The main cause of cognitive impairment in the elderly is Alzheimer's disease.

View Article and Find Full Text PDF

In this study, we discuss the mechanisms behind changes in the conductivity, low-frequency noise, and surface morphology of biosensor chips based on graphene films on SiC substrates during the main stages of the creation of biosensors for detecting influenza viruses. The formation of phenylamine groups and a change in graphene nano-arrangement during functionalization causes an increase in defectiveness and conductivity. Functionalization leads to the formation of large hexagonal honeycomb-like defects up to 500 nm, the concentration of which is affected by the number of bilayer or multilayer inclusions in graphene.

View Article and Find Full Text PDF

This work is devoted to the development and optimization of the parameters of graphene-based sensors. The graphene films used in the present study were grown on semi-insulating 6H-SiC substrates by thermal decomposition of SiC at the temperature of ~1700 °C. The results of measurements by Auger and Raman spectroscopies confirmed the presence of single-layer graphene on the silicon carbide surface.

View Article and Find Full Text PDF

Photoluminescence (PL) was used to estimate the concentration of carbon in GaN grown by hydride vapor phase epitaxy (HVPE). The PL data were compared with profiles of the impurities obtained from secondary ion mass spectrometry (SIMS) measurements. Comparison of PL and SIMS data has revealed that apparently high concentrations of C and O at depths up to 1 µm in SIMS profiles do not represent depth distributions of these species in the GaN matrix but are rather caused by post-growth surface contamination and knocking-in impurity species from the surface.

View Article and Find Full Text PDF