5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) fluorescence shows high sensitivity in detecting the tumor core of high-grade gliomas (HGG) but poor sensitivity for tissue of low-grade gliomas (LGG) and the margins of HGG. The characteristic emission peak for PpIX is known to be located at 635 nm. Recently, a second emission peak was described at 620 nm wavelength in LGG and the tumor infiltration zone of HGG.
View Article and Find Full Text PDFObjectives: 3D printing found its way into various medical applications and could be particularly beneficial for dentistry. Currently, materials for 3D printing of occlusal splints lack mechanical strength compared to polymethyl methacrylate (PMMA) used for standard milling of occlusal splints. It is known that print orientation and graphene nanoplatelets (GNP) can increase biaxial strength in a variety of materials.
View Article and Find Full Text PDFPurpose: Modern techniques for improved tumor visualization have the aim to maximize the extent of resection during brain tumor surgery and thus improve patient prognosis. Optical imaging of autofluorescence is a powerful and non-invasive tool to monitor metabolic changes and transformation in brain tumors. Cellular redox ratios can be retrieved from fluorescence emitted by the coenzymes reduced nicotinamide adenine dinucleotide (phosphate) (NAD(P)H) and flavin adenine dinucleotide (FAD).
View Article and Find Full Text PDF