The diversity of non-human biota is a specific challenge when developing and applying dosimetric models for assessing exposures of flora and fauna from radioactive sources in the environment. Dosimetric models, adopted in Publication 108, provide dose coefficients (DCs) for a group of reference entities [Reference Animals and Plants (RAPs)]. The DCs can be used to evaluate doses and dose rates, and to compare the latter with derived consideration reference levels (DCRLs), which are bands of dose rate where some sort of detrimental effect in a particular RAP may be expected to occur following chronic, long-term radiation exposure, as outlined in Publication 124.
View Article and Find Full Text PDFA method is presented to calculate radiation dose rates arising from radon, thoron and their progeny to non-human biota in the terrestrial environment. The method improves on existing methodologies for the assessment of radon to biota by using a generalised allometric approach to model respiration, calculating dose coefficients for the ICRP reference animals and plants, and extending the approach to cover thoron in addition to radon-derived isotopes. The method is applicable to a range of environmental situations involving these radionuclides in wildlife, with an envisaged application being to study the impact of human activities, which bring NORM radionuclides to the biosphere.
View Article and Find Full Text PDFIn the first years of its operation, the Mayak Production Association, a facility part of the Soviet nuclear weapons program in the Southern Urals, Russia, discharged large amounts of radioactively contaminated effluent into the nearby Techa River, thus exposing the people living at this river to external and internal radiations. The Techa River Cohort is a cohort intensely studied in epidemiology to investigate the correlation between low-dose radiation and health effects on humans. For the individuals in the cohort, the Techa River Dosimetry System describes the accumulated dose in human organs and tissues.
View Article and Find Full Text PDFDiversity of living organisms and their environmental radiation exposure conditions represents a special challenge for non-human dosimetry. In order to contend with such diversity, the International Commission on Radiological Protection (ICRP) has: (a) set up points of reference by providing dose conversion coefficients (DCCs) for reference entities known as 'Reference Animals and Plants' (RAPs); and (b) used dosimetric models that pragmatically assume simple body shapes with uniform composition and density, homogeneous internal contamination, a limited set of idealised external radiation sources, and truncation of the radioactive decay chains. This pragmatic methodology has been further developed and extended systematically.
View Article and Find Full Text PDFRadiat Environ Biophys
November 2014
Doses due to external exposure of terrestrial biota are assessed using differential air kerma from radioactive sources in soil and energy-dependent 'absorbed dose-per-air kerma' conversion factors computed for spherical tissue-equivalent bodies. The presented approach allows computing average whole body absorbed dose for terrestrial organisms with body masses from 1 mg to 1,000 kg located at heights from 10 cm to 500 m above ground. Radioactive sources in soil emitting photons with energies from 10 keV to 10 MeV have been considered.
View Article and Find Full Text PDF