Publications by authors named "A Tuvikene"

Environmental factors can cause cancer in both wild animals and humans. In ecological settings, genetic variation and natural selection can sometimes produce resilience to the negative impacts of environmental change. An increase in oncogenic substances in natural habitats has therefore, unintentionally, created opportunities for using polluted habitats to study cancer defence mechanisms.

View Article and Find Full Text PDF

Aquatic macrophyte taxonomic composition, species abundance and cover determine the physical structure, complexity and heterogeneity of aquatic habitats - the structuring role of macrophytes. These traits influence richness, distribution, feeding and strength of the relationships between food web communities in lakes. The aim of this study was to determine how lakes with different dominating macrophyte ecological groups affect planktonic food web components, emphasising the influence on young of year (YOY) fish and large (≥1 +) fish community.

View Article and Find Full Text PDF

Lack of microplastics (MP) toxicity studies involving environmentally relevant concentrations and exposure times is concerning. Here we analyzed the potential adverse effects of low density polyethylene (LDPE) MP at environmentally relevant concentration in sub-chronic exposure to two amphipods Gmelinoides fasciatus and Gammarus lacustris, species that naturally compete with each other for their habitats. 14-day exposure to 2 μg/L (8 particles/L corresponding to low exposure) and 2 mg/L (∼8400 particles/L, corresponding to high exposure) of 53-100 μm LDPE MP were used to assess ingestion and egestion of MP, evaluate its effects on amphipod mortality, swimming ability and oxidative stress level.

View Article and Find Full Text PDF

Microplastic (MPL) contamination in the marine environment is extensively studied yet little is known about the extent of MPL abundance in seagrass beds. The aim of this study was to evaluate MPL accumulation in coastal seagrass (Zostera marina) beds in the Baltic Sea, Estonia. Surface water was sampled by pumping using 40 μm plankton net, and sediments by trowel.

View Article and Find Full Text PDF

Animal-robot studies can inform us about animal behaviour and inspire advances in agriculture, environmental monitoring and animal health and welfare. Currently, experimental results on how fish are affected by the presence of underwater robots are largely limited to laboratory environments with few individuals and a focus on model species. Laboratory studies provide valuable insight, but their results are not necessarily generalizable to larger scales such as marine aquaculture.

View Article and Find Full Text PDF