Publications by authors named "A Tuuttila"

MARCO is a trimeric class A scavenger receptor of macrophages and dendritic cells that recognizes polyanionic particles and pathogens. The distal, scavenger receptor cysteine-rich (SRCR) domain of the extracellular part of this receptor has been implicated in ligand binding. To provide a structural basis for understanding the ligand-binding mechanisms of MARCO, we have determined the crystal structure of the mouse MARCO SRCR domain.

View Article and Find Full Text PDF

MARCO is a class A scavenger receptor capable of binding both gram-negative and -positive bacteria. Using the surface plasmon resonance technique, we show here that a recombinant, soluble form of MARCO, sMARCO, binds the major gram-negative and -positive bacterial surface components, lipopolysaccharide and lipoteichoic acid. Yet, the interaction of these two polyanions with sMARCO is of much lower affinity than that of polyinosinic acid, a polyanionic inhibitor of bacterial binding to MARCO.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) are a family of multidomain enzymes involved in the physiological degradation of connective tissue, as well as in pathological states such as tumor invasion and arthritis. Apart from transcriptional regulation, MMPs are controlled by proenzyme activation and a class of specific tissue inhibitors of metalloproteinases (TIMPs) that bind to the catalytic site. TIMP-2 is a potent inhibitor of MMPs, but it has also been implicated in a unique cell surface activation mechanism of latent MMP-2/gelatinase A/type IV collagenase (proMMP-2), through its binding to the hemopexin domain of proMMP-2 on the one hand and to a membrane-type MMP activator on the other.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) catalyze extracellular matrix degradation. Control of their activity is a promising target for therapy of diseases characterized by abnormal connective tissue turnover. MMPs are expressed as latent proenzymes that are activated by proteolytic cleavage that triggers a conformational change in the propeptide (cysteine switch).

View Article and Find Full Text PDF

The three-dimensional structure of human tissue inhibitor of metalloproteinases-2 (TIMP-2) was determined by X-ray crystallography to 2.1 A resolution. The structure of the inhibitor consists of two domains.

View Article and Find Full Text PDF