The hydrogen (H) energy industry has continued to expand in recent years due to the decarbonization of the global energy system and the drive towards sustainable development. Due to hydrogen's high flammability and significant safety risks, the efficient detection of hydrogen has become an increasingly hot issue today. In this work, a new type of relatively fast and responsive conducting polymer sensor has been demonstrated for tracing H gas in a nitrogen environment.
View Article and Find Full Text PDFCobalt-doped ZnO (CZO) thin films were deposited on glass substrates at room temperature by radio frequency (RF) magnetron sputtering of a single target prepared with ZnO and CoO powders. Changes in the crystallinity, morphology, optical properties, and chemical composition of the CZO thin films were investigated at various sputtering powers of 45, 60, and 75 W. All samples presented a hexagonal wurtzite-type structure with a preferential -axis at the (002) plane, along with a distinct change in the strain values through X-ray diffraction patterns.
View Article and Find Full Text PDFMXene exhibits impressive characteristics, including flexibility, mechanical robustness, the capacity to cleanse liquids like water through MXene membranes, water-attracting nature, and effectiveness against bacteria. Additionally, bacterial cellulose (BC) exhibits remarkable qualities, including mechanical strength, water absorption, porosity, and biodegradability. The central hypothesis posits that the incorporation of both MXene and bacterial cellulose into the material will result in a remarkable synthesis of the attributes inherent to MXene and BC.
View Article and Find Full Text PDF