The patch-clamp method, which was awarded the Nobel Prize in 1991, is a well-established and indispensable method to study ion channels in living cells and to biophysically characterize non-voltage-gated ion channels, which comprise about 70% of all ion channels in the human genome. To investigate the biophysical properties of non-voltage-gated ion channels, whole-cell measurements with application of continuous voltage ramps are routinely conducted to obtain current-voltage (IV) relationships. However, adequate tools for detailed and quantitative analysis of IV curves are still missing.
View Article and Find Full Text PDFMolecular shape and pharmacological function are interconnected. To capture shape, the fractal dimensionality concept was employed, providing a natural similarity measure for the virtual screening of de novo generated small molecules mimicking the structurally complex natural product (-)-englerin A. Two of the top-ranking designs were synthesized and tested for their ability to modulate transient receptor potential (TRP) cation channels which are cellular targets of (-)-englerin A.
View Article and Find Full Text PDFUnlabelled: The tetrachloroethene (PCE)-respiring bacterium Sulfurospirillum multivorans produces a unique cobamide, namely, norpseudo-B12, which, in comparison to other cobamides, e.g., cobalamin and pseudo-B12, lacks the methyl group in the linker moiety of the nucleotide loop.
View Article and Find Full Text PDFThe first solid-phase parallel synthesis of macrocyclic peptides using three-component coupling driven by aziridine aldehyde dimers is described. The method supports the synthesis of 9- to 18-membered aziridine-containing macrocycles, which are then functionalized by nucleophilic opening of the aziridine ring. This constitutes a robust approach for the rapid parallel synthesis of macrocyclic peptides.
View Article and Find Full Text PDFThe first application of aziridine aldehyde dimers in solid-phase synthesis is reported. The solid-supported disrupted Ugi condensation between an aziridine aldehyde dimer, isonitrile, and backbone-anchored amino acids delivered N-acyl aziridine intermediates, which were reacted with nucleophiles to yield the corresponding piperazinones. Subsequent cleavage from the resin provided a diverse set of 2,3,6-trisubstituted piperazinones starting from various amino acids, aziridine aldehydes, and nucleophiles.
View Article and Find Full Text PDF