Background: Planning radiosurgery to multiple intracranial metastases is complex and shows large variability in dosimetric quality among planners and treatment planning systems (TPS). This project aimed to determine whether autoplanning using the Muliple Brain Mets (AutoMBM) software can improve plan quality and reduce inter-planner variability by crowdsourcing results from prior international planning study.
Methods: Twenty-four institutions autoplanned with AutoMBM on a five metastases case from a prior international planning competition from which population statistics (means and variances) of 23 dosimetric metrics and resulting composite plan score (maximum score = 150) of other TPS (Eclipse, Monaco, RayStation, iPlan, GammaPlan, MultiPlan) were crowdsourced.
This study was aimed to assess patient dosimetry in interventional cardiology (IC) and radiology (IR) and radiation safety of the medical operating staff. For this purpose, four major Algerian hospitals were investigated. The data collected cover radiation protection tools assigned to the operating staff and measured radiation doses to some selected patient populations.
View Article and Find Full Text PDFThe aim of the present work was a Monte Carlo verification of the Multi-grid superposition (MGS) dose calculation algorithm implemented in the CMS XiO (Elekta) treatment planning system and used to calculate the dose distribution produced by photon beams generated by the linear accelerator (linac) Siemens Primus. The BEAMnrc/DOSXYZnrc (EGSnrc package) Monte Carlo model of the linac head was used as a benchmark. In the first part of the work, the BEAMnrc was used for the commissioning of a 6 MV photon beam and to optimize the linac description to fit the experimental data.
View Article and Find Full Text PDFIn an early work we have demonstrated the possibility of using Monte Carlo generated pencil beams for 3D electron beam dose calculations. However, in this model the electron beam was considered as monoenergetic and the effects of the energy spectrum were taken into account by correction factors, derived from measuring central-axis depth dose curves. In the present model, the electron beam is considered as polyenergetic and the pencil beam distribution of a clinical electron beam, of a given nominal energy, is represented as a linear combination of Monte Carlo monoenergetic pencil beams.
View Article and Find Full Text PDFAdvanced electron beam dose calculation models for radiation treatment planning systems require the input of a phase space beam model to configure a clinical electron beam in a computer. This beam model is a distribution in position, energy, and direction of electrons and photons in a plane in front of the patient. The phase space beam model can be determined by Monte Carlo simulation of the treatment head or from a limited set of measurements.
View Article and Find Full Text PDF